Difference between revisions of "Implementing Arduino using Generic Serial Device"
Daballiemo (Talk | contribs) (→Example 1 Arduino, LinuxMCE & RGB LED) |
(Added category: GSD) |
||
(14 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
[[Category:Hardware]] | [[Category:Hardware]] | ||
− | {{versioninfo|1004Status=Working | + | [[Category: GSD]] |
+ | {{versioninfo|810Status=Working|810UpdatedDate=14th November 2012|810UpdatedBy=Daballiemo|1004Status=Working|1004UpdatedDate=3th September 2012|1004UpdatedBy=Daballiemo}} | ||
== General Info == | == General Info == | ||
Line 30: | Line 31: | ||
Note: RGB setting can only be done via a scenario!! | Note: RGB setting can only be done via a scenario!! | ||
+ | |||
+ | One nice feature is that whatever color code the LED (string) has been set to, when using the dim function or switched on or off, it will hold the same color schema. All dim levels are being treated as relative to the orginal value. This means 50% is 50% of the current value and not 50% of the maximum !!! | ||
Line 100: | Line 103: | ||
when 1993 # device type is "RGB switch" template 1993 | when 1993 # device type is "RGB switch" template 1993 | ||
# by using a dim level of "100" we make sure the Arduino can use the previous levels | # by using a dim level of "100" we make sure the Arduino can use the previous levels | ||
− | command [0] = ' | + | command [0] = 'R' # start indicator is relative dimming |
command [3] = 100 # relative dim level | command [3] = 100 # relative dim level | ||
end | end | ||
Line 111: | Line 114: | ||
when 1993 # device type is "RGB switch" template 1993 | when 1993 # device type is "RGB switch" template 1993 | ||
# by using a dim level of "0" we make sure the Arduino will remember the settings | # by using a dim level of "0" we make sure the Arduino will remember the settings | ||
− | command [0] = ' | + | command [0] = 'R' # start indicator is relative dimming |
end | end | ||
Line 118: | Line 121: | ||
when 38 | when 38 | ||
command [0] = 'D' | command [0] = 'D' | ||
− | command [ | + | command [3] = cmd.params_[76] # dim level |
when 1993 | when 1993 | ||
command [0] = 'R' | command [0] = 'R' | ||
− | command [ | + | command [3] = cmd.params_[76] # relative dim level |
end | end | ||
Line 140: | Line 143: | ||
# The Arduino will replay with exactly the same command as it has been given. It can be captured via #350 Process Incoming Data | # The Arduino will replay with exactly the same command as it has been given. It can be captured via #350 Process Incoming Data | ||
+ | |||
</pre> | </pre> | ||
Line 151: | Line 155: | ||
log buffer; | log buffer; | ||
+ | </pre> | ||
+ | |||
+ | '''#373 Private Method Listing ''' | ||
+ | |||
+ | <pre> | ||
+ | |||
+ | def log(line) | ||
+ | # This function logs a line to the log file of the device | ||
+ | log = File.open("/var/log/pluto/" + device_.devid_.to_s + "_Generic_Serial_Device.log", "a") | ||
+ | log.puts Time.now.to_s + " (Ruby script):" + line.to_s | ||
+ | log.close | ||
+ | end | ||
</pre> | </pre> | ||
+ | |||
'''Arduino Uno shopping list''' | '''Arduino Uno shopping list''' | ||
Line 168: | Line 185: | ||
The following sketch assumes you are using pin 3 for Red, 5 for Green and 6 for Blue. (PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.). | The following sketch assumes you are using pin 3 for Red, 5 for Green and 6 for Blue. (PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.). | ||
− | |||
− | |||
<pre> | <pre> | ||
---------------- | ---------------- | ||
− | - - GND ----------RGBLED | + | - - GND ----------RGBLED (This can be a RGB string when using MOSFET's) |
- - ||| | - - ||| | ||
- - 3 ---- 300 Ohm--||| - | - - 3 ---- 300 Ohm--||| - | ||
Line 199: | Line 214: | ||
//***************************************************************** | //***************************************************************** | ||
− | //*with ethernet shield DON'T USE this pin: 10, 11, 12, 13 * | + | // * with ethernet shield DON'T USE this pin: 10, 11, 12, 13 * |
+ | |||
+ | // * (PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function * | ||
//***************************************************************** | //***************************************************************** | ||
Line 206: | Line 223: | ||
#include <SPI.h> // needed for Arduino versions later than 0018 | #include <SPI.h> // needed for Arduino versions later than 0018 | ||
#include <Ethernet.h> | #include <Ethernet.h> | ||
− | |||
boolean debug = true; //debug over serial? | boolean debug = true; //debug over serial? | ||
+ | int RedMemory = 255; | ||
+ | int GreenMemory = 255; | ||
+ | int BlueMemory = 255; | ||
Line 242: | Line 261: | ||
//port setting: | //port setting: | ||
+ | pinMode (9, OUTPUT); | ||
pinMode (8, OUTPUT); | pinMode (8, OUTPUT); | ||
− | |||
pinMode (6, OUTPUT); | pinMode (6, OUTPUT); | ||
pinMode (5, OUTPUT); | pinMode (5, OUTPUT); | ||
+ | pinMode (3, OUTPUT); | ||
+ | |||
+ | |||
} | } | ||
+ | |||
+ | |||
+ | //******************************************************************************************************************************** | ||
+ | // | ||
+ | // Commandstructure | ||
+ | // | ||
+ | // A - BBB - CCC - DDD - EEE | ||
+ | // | ||
+ | // P(ower) pin number (8 or 9) 0 (OFF 0 0 | ||
+ | // 1 (ON) | ||
+ | // D(im) pin number (3 or 9) 0-100 (Level) 0 0 | ||
+ | // | ||
+ | // C(olor) pin number (3) 0-255 (Red) 0-255 (Green) 0-255 (Blue) | ||
+ | // | ||
+ | // R(elative) pin number (3) 0-100 | ||
+ | // | ||
+ | // RedPin = 3; ------> LinuxMCE RGB switch port number has to be 3 !!!! | ||
+ | // GreenPin = 5; | ||
+ | // BluePin = 6; | ||
+ | // OnOffPin = 8; ------> LinuxMCE On/Off switch port number has to be 8 !!!! | ||
+ | // WhitePin = 9; ------> LinuxMCE Dimmer switch port number has to be 9 !!!! | ||
+ | // | ||
+ | // DaBalliemo september 2012 | ||
+ | // | ||
+ | //********************************************************************************************************************************* | ||
Line 274: | Line 321: | ||
} | } | ||
− | if (debug) Serial.print("Command given: "); | + | if (debug) { |
− | + | Serial.println("***************************************"); | |
− | + | Serial.print("Command given: "); | |
− | + | Serial.println(packetBuffer); | |
− | + | Serial.print("Buffersize: "); | |
− | + | Serial.println(packetSize); | |
− | + | Serial.println("***************************************"); | |
− | + | } | |
+ | //############################## Power Section ################################################################################# | ||
+ | //if you receive a command that start with 'P' it means that you received a boolean value: | ||
+ | //LinuxMCE sends "Px-0" or "Px-1". The first turn on a pin | ||
+ | //(in this case: pin x). The second just turn off the pin x. | ||
− | if (packetBuffer[0] == 'P' ) { | + | if (packetBuffer[0] == 'P' ) { // Px-1 or Px-0 |
char led_state_char[4]; //contains 'on' or 'off' | char led_state_char[4]; //contains 'on' or 'off' | ||
char pin_char[4]; // the pin number | char pin_char[4]; // the pin number | ||
Line 300: | Line 351: | ||
if (var == 0 && packetBuffer[i] != '-') { | if (var == 0 && packetBuffer[i] != '-') { | ||
− | + | pin_char[inCount] = packetBuffer[i]; | |
inCount++; | inCount++; | ||
− | + | inCount_pin_char = inCount; | |
} | } | ||
if (var == 1 && packetBuffer[i] != '-') { | if (var == 1 && packetBuffer[i] != '-') { | ||
− | + | led_state_char[inCount] = packetBuffer[i]; | |
inCount++; | inCount++; | ||
− | + | inCount_led_state_char = inCount; | |
} | } | ||
Line 314: | Line 365: | ||
pin_char[inCount_pin_char] = '\0'; | pin_char[inCount_pin_char] = '\0'; | ||
} | } | ||
− | if (debug) Serial.println( | + | |
− | + | if (debug) { | |
− | + | Serial.println("***************************************"); | |
− | + | Serial.println("Power command given"); | |
− | + | Serial.println(""); | |
− | + | Serial.print("Pin number is: "); | |
+ | Serial.println(pin_char); | ||
+ | Serial.print(" Command given is: "); | ||
+ | Serial.println(led_state_char); | ||
+ | Serial.println("***************************************"); | ||
+ | } | ||
+ | int pin = atoi(pin_char); //our pin number | ||
− | if ( | + | if (atoi(led_state_char) == 1) { //if we send 'Px-1' |
− | + | char led_state_send[10] = "P"; | |
− | char led_state_send[10] = " | + | |
strcat(led_state_send, pin_char); | strcat(led_state_send, pin_char); | ||
− | + | strcat(led_state_send, "-"); | |
− | client.print(led_state_send); //send a string to LMCE: " | + | strcat(led_state_send, led_state_char); |
+ | client.print(led_state_send); //send a string to LMCE: "Px-1" | ||
digitalWrite(pin, HIGH); //turn on the pin x | digitalWrite(pin, HIGH); //turn on the pin x | ||
} | } | ||
− | if ( | + | if (atoi(led_state_char) == 0) { //if we send 'Px-0' |
− | + | char led_state_send[10] = "P"; | |
− | char led_state_send[10] = " | + | |
strcat(led_state_send, pin_char); | strcat(led_state_send, pin_char); | ||
− | + | strcat(led_state_send, "-"); | |
− | client.print( led_state_send); | + | strcat(led_state_send, led_state_char); |
+ | client.print(led_state_send); //send a string to LMCE: "Px-0"; | ||
digitalWrite(pin, LOW); | digitalWrite(pin, LOW); | ||
} | } | ||
Line 343: | Line 400: | ||
− | + | //############################## Dim Section ################################################################################# | |
− | + | //if we receive a command that start with 'D' it means that you have chosen a dim level in LMCE | |
− | + | //the string that we send is like : "D9-55" and it's means: 'd' is use for "dim", "9" is the pin that | |
− | + | //we want change dim, "55" is the dim value. LMCE range is from "0" to "100". The conversion 0-100 into 0-255 is done in this sketch | |
− | + | //we can use this dim to change directly the value to use in AnalogWrite, | |
− | + | ||
if (packetBuffer[0] == 'D') { | if (packetBuffer[0] == 'D') { | ||
Line 387: | Line 444: | ||
dim = atoi(dim_char); //here we have the dim number: 0-100 | dim = atoi(dim_char); //here we have the dim number: 0-100 | ||
dim = dim * 2.55; // Translate 0-100 into 0-255, gets trunked | dim = dim * 2.55; // Translate 0-100 into 0-255, gets trunked | ||
+ | dim_pin = atoi(dim_pin_char); //and here the pin number | ||
+ | |||
+ | if (debug) { | ||
+ | Serial.println("***************************************"); | ||
+ | Serial.println("Dim command given"); | ||
+ | Serial.print("dim pin: "); | ||
+ | Serial.println(dim_pin); | ||
+ | Serial.print("dim level: "); | ||
+ | Serial.println(dim); | ||
+ | Serial.println("***************************************"); | ||
+ | } | ||
+ | |||
+ | char dim_state_send[10] = "D"; | ||
+ | strcat(dim_state_send, dim_pin_char); | ||
+ | strcat(dim_state_send, "-"); | ||
+ | strcat(dim_state_send, dim_char); | ||
+ | client.print( dim_state_send); //here return the made action. | ||
+ | send_cmd = true; | ||
+ | analogWrite(dim_pin, dim); //here we change the dim of the selected pin | ||
+ | } | ||
+ | |||
+ | //############################## Relative Dim Section ################################################################################# | ||
+ | //if we receive a command that start with 'R' it means that you have chosen a relative dim level in LMCE for a RGB LED or String | ||
+ | //the string that we send is like : "R3-55" and it's means: 'R' is use for "relative dim", "3" is the first pin that | ||
+ | //we want change dim, "55" is the dim value. LMCE range is from "0" to "100". The conversion 0-100 into 0-255 is done in this sketch | ||
+ | //we can use this dim to change directly the value to use in AnalogWrite, | ||
+ | |||
+ | if (packetBuffer[0] == 'R') { | ||
+ | char dim_char[10]; | ||
+ | char dim_pin_char[10]; | ||
+ | int inCount = 0; | ||
+ | int var = 0; | ||
+ | int inCount_dim_pin_char; | ||
+ | int inCount_dim_char; | ||
+ | int DimRed; | ||
+ | int DimGreen; | ||
+ | int DimBlue; | ||
+ | float f; | ||
+ | |||
+ | for (int i = 1; i < packetSize; i++) | ||
+ | { | ||
+ | //Serial.println(packetBuffer[i]); | ||
+ | if (packetBuffer[i] == '-') { | ||
+ | var++; | ||
+ | inCount = 0; | ||
+ | } | ||
+ | |||
+ | if (var == 0 && packetBuffer[i] != '-') { | ||
+ | dim_pin_char[inCount] = packetBuffer[i]; | ||
+ | inCount++; | ||
+ | inCount_dim_pin_char = inCount; | ||
+ | } | ||
+ | |||
+ | if (var == 1 && packetBuffer[i] != '-') { | ||
+ | dim_char[inCount] = packetBuffer[i]; | ||
+ | inCount++; | ||
+ | inCount_dim_char = inCount; | ||
+ | } | ||
+ | |||
+ | dim_pin_char[inCount_dim_pin_char] = '\0'; | ||
+ | dim_char[inCount_dim_char] = '\0'; | ||
+ | } | ||
+ | |||
+ | |||
+ | //Serial.println(dim_char); | ||
+ | |||
+ | dim = atoi(dim_char); //here we have the dim number: 0-100 | ||
dim_pin = atoi(dim_pin_char); //and here the pin number | dim_pin = atoi(dim_pin_char); //and here the pin number | ||
Line 394: | Line 518: | ||
if (debug) Serial.println(dim); | if (debug) Serial.println(dim); | ||
− | char dim_state_send[10] = " | + | char dim_state_send[10] = "R"; |
strcat(dim_state_send, dim_pin_char); | strcat(dim_state_send, dim_pin_char); | ||
strcat(dim_state_send, "-"); | strcat(dim_state_send, "-"); | ||
Line 403: | Line 527: | ||
send_cmd = true; | send_cmd = true; | ||
− | |||
− | |||
+ | DimRed = int(RedMemory*float(dim)/100); //here we have the dim number: | ||
+ | dim_pin = atoi(dim_pin_char); //and here the pin number | ||
+ | dim_pin = dim_pin; | ||
+ | analogWrite(dim_pin, DimRed); | ||
+ | |||
+ | if (debug) { | ||
+ | Serial.println("***************************************"); | ||
+ | Serial.println("Relative Dim command given"); | ||
+ | Serial.print("Red pin: "); | ||
+ | Serial.print(dim_pin); | ||
+ | Serial.print(" Memory level: "); | ||
+ | Serial.print(RedMemory); | ||
+ | Serial.print(" New level: "); | ||
+ | Serial.println(DimRed); | ||
+ | } | ||
+ | |||
+ | DimGreen = int(GreenMemory*float(dim)/100); //here we have the dim number: 0-255 | ||
+ | dim_pin = atoi(dim_pin_char); //and here the pin number | ||
+ | dim_pin = dim_pin + 2; | ||
+ | analogWrite(dim_pin, DimGreen); | ||
+ | |||
+ | if (debug) { | ||
+ | Serial.print("Green pin: "); | ||
+ | Serial.print(dim_pin); | ||
+ | Serial.print(" Memory level: "); | ||
+ | Serial.print(GreenMemory); | ||
+ | Serial.print(" New level: "); | ||
+ | Serial.println(DimGreen); | ||
+ | } | ||
+ | |||
+ | DimBlue = int(BlueMemory*float(dim)/100); //here we have the dim number: 0-255 | ||
+ | dim_pin = atoi(dim_pin_char); //and here the pin number | ||
+ | dim_pin = dim_pin + 3; | ||
+ | analogWrite(dim_pin, DimBlue); | ||
+ | |||
+ | if (debug) { | ||
+ | Serial.print("Blue pin: "); | ||
+ | Serial.print(dim_pin); | ||
+ | Serial.print(" Memory level: "); | ||
+ | Serial.print(BlueMemory); | ||
+ | Serial.print(" New level: "); | ||
+ | Serial.println(DimBlue); | ||
+ | Serial.println("***************************************"); | ||
+ | } | ||
+ | |||
+ | } | ||
Line 464: | Line 632: | ||
Blue_char[inCount_Blue_char] = '\0'; | Blue_char[inCount_Blue_char] = '\0'; | ||
− | + | if (debug) { | |
− | + | Serial.println("***************************************"); | |
− | + | Serial.println("RGB command given"); | |
− | + | Serial.print("Redpin: "); | |
− | + | Serial.println(Red_pin_char); | |
− | + | Serial.print("Red:"); | |
− | + | Serial.print(Red_char); | |
− | + | Serial.print(" Green:"); | |
+ | Serial.print(Green_char); | ||
+ | Serial.print(" Blue:"); | ||
+ | Serial.println(Blue_char); | ||
+ | } | ||
− | + | dim = atoi(Red_char); //here we have the dim number: 0-255 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | dim = atoi(Red_char); //here we have the dim number: 0- | + | |
dim_pin = atoi(Red_pin_char); //and here the pin number | dim_pin = atoi(Red_pin_char); //and here the pin number | ||
analogWrite(dim_pin, dim); | analogWrite(dim_pin, dim); | ||
+ | RedMemory = dim; // Make sure we remember | ||
− | + | dim = atoi(Green_char); //here we have the dim number: 0-255 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | dim = atoi(Green_char); //here we have the dim number: 0- | + | |
dim_pin = atoi(Red_pin_char); //and here the pin number | dim_pin = atoi(Red_pin_char); //and here the pin number | ||
− | dim_pin = dim_pin + | + | dim_pin = dim_pin + 2; |
analogWrite(dim_pin, dim); | analogWrite(dim_pin, dim); | ||
+ | GreenMemory = dim; | ||
− | + | dim = atoi(Blue_char); //here we have the dim number: 0-255 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | dim = atoi(Blue_char); //here we have the dim number: 0- | + | |
dim_pin = atoi(Red_pin_char); //and here the pin number | dim_pin = atoi(Red_pin_char); //and here the pin number | ||
− | dim_pin = dim_pin + | + | dim_pin = dim_pin + 3; |
analogWrite(dim_pin, dim); | analogWrite(dim_pin, dim); | ||
+ | BlueMemory = dim; | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
char dim_state_send[16] = "C"; | char dim_state_send[16] = "C"; | ||
strcat(dim_state_send, Red_pin_char); | strcat(dim_state_send, Red_pin_char); | ||
Line 518: | Line 670: | ||
strcat(dim_state_send, "-"); | strcat(dim_state_send, "-"); | ||
strcat(dim_state_send, Blue_char); | strcat(dim_state_send, Blue_char); | ||
− | |||
− | |||
client.print( dim_state_send); //here return the made action. | client.print( dim_state_send); //here return the made action. | ||
send_cmd = true; | send_cmd = true; | ||
Line 525: | Line 675: | ||
//here we change the dim of the selected pin | //here we change the dim of the selected pin | ||
} | } | ||
+ | } | ||
+ | } | ||
− | + | } | |
− | + | ||
− | + | ||
− | + | ||
</pre> | </pre> |
Latest revision as of 11:40, 3 July 2016
Version | Status | Date Updated | Updated By |
---|---|---|---|
710 | Unknown | N/A | N/A |
810 | Working | 14th November 2012 | Daballiemo |
1004 | Working | 3th September 2012 | Daballiemo |
1204 | Unknown | N/A | N/A |
1404 | Unknown | N/A | N/A |
Usage Information |
General Info
Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.
Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is programmed using the Arduino programming language (based on Wiring) and the Arduino development environment (based on Processing). Arduino projects can be stand-alone or they can communicate with software running on a computer (e.g. Flash, Processing, MaxMSP).
In the following I want to give an overview what needs to be done to have LinuxMCE control a RGB LED (string) through an Arduino. The string is within brackets as the only added to the Arduino to be able to control a ledstring is some mosfets and a powerblock.
Setting up Linuxmce
For now define Arduino as a vendor via Advanced -> Device Templates. Select the "Add Manufacturer" button and provide "Arduino" as manufacturer followed by save and close.
Define a new template for the Arduino Uno (which I am using atm)
Advanced -> Device Templates, selected "Add device template". Name the template "Arduino Uno", select Implements DCE, Device Category is "Interfaces - Specialized #97". Specify that your device is controlled via category "Device Category:Core" ("Computers - Core"). Otherwise the driver will not be started on the core. As I am using an Ethernet shield select "Is IP based", set "Comm Method" to Ethernet and under "Device data" add #69 TCP Port (int). Give the TCP Port the value "69", set it to required and allowed to modify.
Now set up the rest of the template according to http://wiki.linuxmce.org/index.php/How_to_add_your_own_GSD_device.
Example 1 Arduino, LinuxMCE & RGB LED
In this example we will use the Arduino Uno with an Ethernet shield to be able to control a RGB LED from within LinuxMCE. The RGB switch (Device Template #: 1993) has to be made a child of the Arduino GSD. Make sure in the auto generated scenario for this device that the "ON" command is really "ON" and not level "100".
Note: RGB setting can only be done via a scenario!!
One nice feature is that whatever color code the LED (string) has been set to, when using the dim function or switched on or off, it will hold the same color schema. All dim levels are being treated as relative to the orginal value. This means 50% is 50% of the current value and not 50% of the maximum !!!
Change the following processes under ruby code of your Arduino GSD to the following:
#384 Process Receive Command For Child
################################################################################################################## # Use below with care. The commands used will interact with the sketch on the Arduino. There is however no way LMCE # can retrieve what you have connected to the pins, so make sure the combination LMCE, Arduino and physical connections # are in line with eachother. # One example: if you define an RGB switch with port 3, it will also take up port 5 & 6 on the Arduino. # # # Commandstructure # # A - BBB - CCC - DDD - EEE # # P(ower) pin number (8 or 9) 0 (OFF 0 0 # 1 (ON) # D(im) pin number (3 or 9) 0-100 (Level) 0 0 # # C(olor) pin number (3) 0-255 (Red) 0-255 (Green) 0-255 (Blue) # # R(elative) pin number (3) 0-100 (Level) # # RedPin = 3; ------> LinuxMCE RGB switch port number has to be 3 !!!! # GreenPin = 5; # BluePin = 6; # OnOffPin = 8; ------> LinuxMCE On/Off switch port number has to be 8 !!!! # WhitePin = 9; ------> LinuxMCE Dimmer switch port number has to be 9 !!!! # # # DaBalliemo september 2012 ################################################################################################################## cmdId = cmd.id_ # Command ID: ON, OFF, SET LEVEL cmdTo = cmd.devidto_ # Device ID in LinuxMCE deviceID = device_.childdevices_[cmd.devidto_].devdata_[12] # 12 contains a port/channel childType = device_.childdevices_[cmdTo].devtemplid_ # Template ID to know type of device: switch or dimmer command = ['','','','','','','','',''] # define command array log ('logging from #384'); log ('Device ID'); log deviceID; log ('Command given'); # orginal command from LMCE log cmdId; log ('Device Template'); # Template ID ie switch, dimmer or RGB log childType; log ('Level'); log cmd.params_[76]; # The level to set, as a value between 0 (off) and 100 (full). # It can be preceeded with a - or + indicating a relative value. +20 means up 20%. log ('RGB'); log cmd.params_[279]; log cmd.params_[280]; log cmd.params_[281]; command [1] = deviceID # Port number defined in LMCE and pin number in Arduino Uno command [2] = '-' case cmdId when 192 # 192 is the 'ON' command case childType when 37, 38 # device type is "on/off switch" template 37 or dimmable switch template 38 command [0] = 'P' # Start indication is P (Power) command [3] = '1' # '1' indicating 'ON' when 1993 # device type is "RGB switch" template 1993 # by using a dim level of "100" we make sure the Arduino can use the previous levels command [0] = 'R' # start indicator is relative dimming command [3] = 100 # relative dim level end when 193 # 193 is the 'OFF' command command [3] = '0' case childType when 37, 38 # device type is "on/off switch" template 37 or dimmable switch template 38 command [0] = 'P' # Start indication is P (Power) when 1993 # device type is "RGB switch" template 1993 # by using a dim level of "0" we make sure the Arduino will remember the settings command [0] = 'R' # start indicator is relative dimming end when 184 # 184 is Level of dimmer case childType when 38 command [0] = 'D' command [3] = cmd.params_[76] # dim level when 1993 command [0] = 'R' command [3] = cmd.params_[76] # relative dim level end when 980 # 980 is color scenario command (template 1993) command [0] = 'C' # start indicator is C (Color) command [4] = cmd.params_[279] # red level command [5] = '-' command [6] = cmd.params_[280] # green level command [7] = '-' command [8] = cmd.params_[281] # blue level end commandstring = command.to_s # wrap the command array into a string log ('Sending'); # log that we are sending log commandstring; # put in logfile what we send conn_.Send commandstring # send if off # The Arduino will replay with exactly the same command as it has been given. It can be captured via #350 Process Incoming Data
#350 Process Incoming Data
buffer = conn_.Recv(100,500); log ('Receiving'); log buffer;
#373 Private Method Listing
def log(line) # This function logs a line to the log file of the device log = File.open("/var/log/pluto/" + device_.devid_.to_s + "_Generic_Serial_Device.log", "a") log.puts Time.now.to_s + " (Ruby script):" + line.to_s log.close end
Arduino Uno shopping list
Shopping list:
- Arduino Uno
- Ethernet Shield
- LED
- Resistors
- Breadboard and some wires
- IDE installed on computer
There are numerous examples on the internet how to hook up a LED to the Arduino. Because there is no way of knowing what LED exactly is being used please find your own setup between all the examples.
The following sketch assumes you are using pin 3 for Red, 5 for Green and 6 for Blue. (PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.).
---------------- - - GND ----------RGBLED (This can be a RGB string when using MOSFET's) - - ||| - - 3 ---- 300 Ohm--||| - - - 5 ---- 300 Ohm --|| - Arduino - 6 ---- 300 Ohm ---| - - - - 8 ----- On/Off - - 9 --------------LED (Dimmable) - - | ---------------- GND --- 300 Ohm --
Sketch for Arduino
/* arduino_control_by_lmce.ino: This sketch sends and receive TCP message strings to LinuxMCE. */ //***************************************************************** // * with ethernet shield DON'T USE this pin: 10, 11, 12, 13 * // * (PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function * //***************************************************************** #include <math.h> #include <SPI.h> // needed for Arduino versions later than 0018 #include <Ethernet.h> boolean debug = true; //debug over serial? int RedMemory = 255; int GreenMemory = 255; int BlueMemory = 255; // Enter a MAC address and IP address for your controller below. // The IP address will be dependent on your local network: byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x58, 0x27 }; byte ip[] = { 192,168,80,129}; byte gateway[] = { 192,168,80,1 }; byte subnet[] = { 255,255,255,0 }; unsigned int localPort = 69; // local port to listen on // buffers for receiving and sending data char packetBuffer[1024]; //buffer to hold incoming commandpacket, EthernetServer server(69); void setup() { if (debug) Serial.begin(9600); if (debug) Serial.println("Starting LinuxMCE sketch..."); // start the Ethernet Ethernet.begin(mac, ip,gateway, subnet); server.begin(); //port setting: pinMode (9, OUTPUT); pinMode (8, OUTPUT); pinMode (6, OUTPUT); pinMode (5, OUTPUT); pinMode (3, OUTPUT); } //******************************************************************************************************************************** // // Commandstructure // // A - BBB - CCC - DDD - EEE // // P(ower) pin number (8 or 9) 0 (OFF 0 0 // 1 (ON) // D(im) pin number (3 or 9) 0-100 (Level) 0 0 // // C(olor) pin number (3) 0-255 (Red) 0-255 (Green) 0-255 (Blue) // // R(elative) pin number (3) 0-100 // // RedPin = 3; ------> LinuxMCE RGB switch port number has to be 3 !!!! // GreenPin = 5; // BluePin = 6; // OnOffPin = 8; ------> LinuxMCE On/Off switch port number has to be 8 !!!! // WhitePin = 9; ------> LinuxMCE Dimmer switch port number has to be 9 !!!! // // DaBalliemo september 2012 // //********************************************************************************************************************************* // variables uses to change the value of analogWrite function. int dim = 0; int dim_pin = 0; void loop() { bool send_cmd = false; //is true when i send a command. // if there's commanddata available, read a packet EthernetClient client = server.available(); int packetSize = 0; if (client) { if (client.connected()) { while (client.available()) { packetBuffer[packetSize] = client.read(); packetSize++; packetBuffer[packetSize] = '\0'; } if (debug) { Serial.println("***************************************"); Serial.print("Command given: "); Serial.println(packetBuffer); Serial.print("Buffersize: "); Serial.println(packetSize); Serial.println("***************************************"); } //############################## Power Section ################################################################################# //if you receive a command that start with 'P' it means that you received a boolean value: //LinuxMCE sends "Px-0" or "Px-1". The first turn on a pin //(in this case: pin x). The second just turn off the pin x. if (packetBuffer[0] == 'P' ) { // Px-1 or Px-0 char led_state_char[4]; //contains 'on' or 'off' char pin_char[4]; // the pin number int inCount = 0; int var = 0; int inCount_led_state_char; int inCount_pin_char; for (int i = 1; i < packetSize; i++) { if (packetBuffer[i] == '-') { var++; inCount = 0; } if (var == 0 && packetBuffer[i] != '-') { pin_char[inCount] = packetBuffer[i]; inCount++; inCount_pin_char = inCount; } if (var == 1 && packetBuffer[i] != '-') { led_state_char[inCount] = packetBuffer[i]; inCount++; inCount_led_state_char = inCount; } led_state_char[inCount_led_state_char] = '\0'; pin_char[inCount_pin_char] = '\0'; } if (debug) { Serial.println("***************************************"); Serial.println("Power command given"); Serial.println(""); Serial.print("Pin number is: "); Serial.println(pin_char); Serial.print(" Command given is: "); Serial.println(led_state_char); Serial.println("***************************************"); } int pin = atoi(pin_char); //our pin number if (atoi(led_state_char) == 1) { //if we send 'Px-1' char led_state_send[10] = "P"; strcat(led_state_send, pin_char); strcat(led_state_send, "-"); strcat(led_state_send, led_state_char); client.print(led_state_send); //send a string to LMCE: "Px-1" digitalWrite(pin, HIGH); //turn on the pin x } if (atoi(led_state_char) == 0) { //if we send 'Px-0' char led_state_send[10] = "P"; strcat(led_state_send, pin_char); strcat(led_state_send, "-"); strcat(led_state_send, led_state_char); client.print(led_state_send); //send a string to LMCE: "Px-0"; digitalWrite(pin, LOW); } send_cmd = true; //we have read a command } //############################## Dim Section ################################################################################# //if we receive a command that start with 'D' it means that you have chosen a dim level in LMCE //the string that we send is like : "D9-55" and it's means: 'd' is use for "dim", "9" is the pin that //we want change dim, "55" is the dim value. LMCE range is from "0" to "100". The conversion 0-100 into 0-255 is done in this sketch //we can use this dim to change directly the value to use in AnalogWrite, if (packetBuffer[0] == 'D') { char dim_char[10]; char dim_pin_char[10]; int inCount = 0; int var = 0; int inCount_dim_pin_char; int inCount_dim_char; for (int i = 1; i < packetSize; i++) { //Serial.println(packetBuffer[i]); if (packetBuffer[i] == '-') { var++; inCount = 0; } if (var == 0 && packetBuffer[i] != '-') { dim_pin_char[inCount] = packetBuffer[i]; inCount++; inCount_dim_pin_char = inCount; } if (var == 1 && packetBuffer[i] != '-') { dim_char[inCount] = packetBuffer[i]; inCount++; inCount_dim_char = inCount; } dim_pin_char[inCount_dim_pin_char] = '\0'; dim_char[inCount_dim_char] = '\0'; } //Serial.println(dim_char); dim = atoi(dim_char); //here we have the dim number: 0-100 dim = dim * 2.55; // Translate 0-100 into 0-255, gets trunked dim_pin = atoi(dim_pin_char); //and here the pin number if (debug) { Serial.println("***************************************"); Serial.println("Dim command given"); Serial.print("dim pin: "); Serial.println(dim_pin); Serial.print("dim level: "); Serial.println(dim); Serial.println("***************************************"); } char dim_state_send[10] = "D"; strcat(dim_state_send, dim_pin_char); strcat(dim_state_send, "-"); strcat(dim_state_send, dim_char); client.print( dim_state_send); //here return the made action. send_cmd = true; analogWrite(dim_pin, dim); //here we change the dim of the selected pin } //############################## Relative Dim Section ################################################################################# //if we receive a command that start with 'R' it means that you have chosen a relative dim level in LMCE for a RGB LED or String //the string that we send is like : "R3-55" and it's means: 'R' is use for "relative dim", "3" is the first pin that //we want change dim, "55" is the dim value. LMCE range is from "0" to "100". The conversion 0-100 into 0-255 is done in this sketch //we can use this dim to change directly the value to use in AnalogWrite, if (packetBuffer[0] == 'R') { char dim_char[10]; char dim_pin_char[10]; int inCount = 0; int var = 0; int inCount_dim_pin_char; int inCount_dim_char; int DimRed; int DimGreen; int DimBlue; float f; for (int i = 1; i < packetSize; i++) { //Serial.println(packetBuffer[i]); if (packetBuffer[i] == '-') { var++; inCount = 0; } if (var == 0 && packetBuffer[i] != '-') { dim_pin_char[inCount] = packetBuffer[i]; inCount++; inCount_dim_pin_char = inCount; } if (var == 1 && packetBuffer[i] != '-') { dim_char[inCount] = packetBuffer[i]; inCount++; inCount_dim_char = inCount; } dim_pin_char[inCount_dim_pin_char] = '\0'; dim_char[inCount_dim_char] = '\0'; } //Serial.println(dim_char); dim = atoi(dim_char); //here we have the dim number: 0-100 dim_pin = atoi(dim_pin_char); //and here the pin number if (debug) Serial.print("dim pin: "); if (debug) Serial.println(dim_pin); if (debug) Serial.print("dim level: "); if (debug) Serial.println(dim); char dim_state_send[10] = "R"; strcat(dim_state_send, dim_pin_char); strcat(dim_state_send, "-"); strcat(dim_state_send, dim_char); if (debug) Serial.println(dim_state_send); client.print( dim_state_send); //here return the made action. send_cmd = true; DimRed = int(RedMemory*float(dim)/100); //here we have the dim number: dim_pin = atoi(dim_pin_char); //and here the pin number dim_pin = dim_pin; analogWrite(dim_pin, DimRed); if (debug) { Serial.println("***************************************"); Serial.println("Relative Dim command given"); Serial.print("Red pin: "); Serial.print(dim_pin); Serial.print(" Memory level: "); Serial.print(RedMemory); Serial.print(" New level: "); Serial.println(DimRed); } DimGreen = int(GreenMemory*float(dim)/100); //here we have the dim number: 0-255 dim_pin = atoi(dim_pin_char); //and here the pin number dim_pin = dim_pin + 2; analogWrite(dim_pin, DimGreen); if (debug) { Serial.print("Green pin: "); Serial.print(dim_pin); Serial.print(" Memory level: "); Serial.print(GreenMemory); Serial.print(" New level: "); Serial.println(DimGreen); } DimBlue = int(BlueMemory*float(dim)/100); //here we have the dim number: 0-255 dim_pin = atoi(dim_pin_char); //and here the pin number dim_pin = dim_pin + 3; analogWrite(dim_pin, DimBlue); if (debug) { Serial.print("Blue pin: "); Serial.print(dim_pin); Serial.print(" Memory level: "); Serial.print(BlueMemory); Serial.print(" New level: "); Serial.println(DimBlue); Serial.println("***************************************"); } } //############################## RGB Section ################################################################################# //if we receive a command that start with 'C' it means that you have chosen a RGB scenario level in LMCE. //the string that we send is like : "C9-55/155/255" and it's means: 'C' is color i.e. "RGB", "9" is the 1st pin of the RGB LED you have //connected to the Arduino, pin 10 is Green and pin 11 is Blue.LMCE range is from "0" to "255" for each channel so no adjustment is necessary. if (packetBuffer[0] == 'C') { // Received a command string for RGB char Red_char[10]; char Red_pin_char[10]; char Green_char[10]; char Green_pin_char[10]; char Blue_char[10]; char Blue_pin_char[10]; int inCount = 0; int var = 0; int inCount_RGB_pin_char; int inCount_Red_char; int inCount_Green_char; int inCount_Blue_char; for (int i = 1; i < packetSize; i++) { //Serial.println(packetBuffer[i]); if (packetBuffer[i] == '-') { var++; inCount = 0; } if (var == 0 && packetBuffer[i] != '-') { Red_pin_char[inCount] = packetBuffer[i]; inCount++; inCount_RGB_pin_char = inCount; } if (var == 1 &&packetBuffer[i] != '-') { Red_char[inCount] = packetBuffer[i]; inCount++; inCount_Red_char = inCount; } if (var == 2 && packetBuffer[i] != '-') { Green_char[inCount] = packetBuffer[i]; inCount++; inCount_Green_char = inCount; } if (var == 3 && packetBuffer[i] != '-') { // Reading Blue value Blue_char[inCount] = packetBuffer[i]; inCount++; inCount_Blue_char = inCount; } } Red_pin_char[inCount_RGB_pin_char] = '\0'; Red_char[inCount_Red_char] = '\0'; Green_char[inCount_Green_char] = '\0'; Blue_char[inCount_Blue_char] = '\0'; if (debug) { Serial.println("***************************************"); Serial.println("RGB command given"); Serial.print("Redpin: "); Serial.println(Red_pin_char); Serial.print("Red:"); Serial.print(Red_char); Serial.print(" Green:"); Serial.print(Green_char); Serial.print(" Blue:"); Serial.println(Blue_char); } dim = atoi(Red_char); //here we have the dim number: 0-255 dim_pin = atoi(Red_pin_char); //and here the pin number analogWrite(dim_pin, dim); RedMemory = dim; // Make sure we remember dim = atoi(Green_char); //here we have the dim number: 0-255 dim_pin = atoi(Red_pin_char); //and here the pin number dim_pin = dim_pin + 2; analogWrite(dim_pin, dim); GreenMemory = dim; dim = atoi(Blue_char); //here we have the dim number: 0-255 dim_pin = atoi(Red_pin_char); //and here the pin number dim_pin = dim_pin + 3; analogWrite(dim_pin, dim); BlueMemory = dim; char dim_state_send[16] = "C"; strcat(dim_state_send, Red_pin_char); strcat(dim_state_send, "-"); strcat(dim_state_send, Red_char); strcat(dim_state_send, "-"); strcat(dim_state_send, Green_char); strcat(dim_state_send, "-"); strcat(dim_state_send, Blue_char); client.print( dim_state_send); //here return the made action. send_cmd = true; //here we change the dim of the selected pin } } } }